Hackathon Data Mashup Ideas
Combine Open Finance APIs with UAE government datasets to create innovative, locally-relevant solutions that impress judges.Aspirational Examples - Not Hackathon RequirementsThese mashup concepts demonstrate the potential of combining Open Finance with government data. They are:Inspirational, Not Required:
- Show whatβs possible with data combinations
- NOT expected deliverables for a hackathon
- Production-scale applications, not 48-hour MVPs
- Each example is far more complex than needed for a hackathon demo
- Requires multiple external APIs that may be unavailable or unreliable
- Budget claims (e.g., β20% reductionβ) are illustrative/hypothetical, not verified
- Pick ONE feature from ONE mashup concept
- Build a simple MVP demonstrating the core value
- Focus on demo-able functionality, not complete production systems
- Have backup plans if external data sources are unavailable
π Winning Formula: Open Finance APIs + Government Data + Smart Implementation = Hackathon Success
Featured Mashup Concepts
These six high-impact combinations have been proven to win hackathons by addressing real UAE market needs.1. πΏ ESG PFM Coach
Personalized sustainability advisor using spending patterns and environmental dataData Sources
- Open Finance: Card transactions, merchant categories, spending patterns
- Government Data:
- EAD air quality indices
- DEWA energy consumption statistics
- RTA public transport data
Implementation
- Architecture
- Core Code
- UI Components
Copy
class ESGCoach {
constructor(openFinanceAPI, governmentAPIs) {
this.finance = openFinanceAPI;
this.airQuality = governmentAPIs.ead;
this.energy = governmentAPIs.dewa;
}
async calculateESGScore(userId, period = 30) {
// Get user's transactions
const transactions = await this.finance.getTransactions(userId, period);
// Analyze carbon footprint
const carbonScore = await this.analyzeCarbonFootprint(transactions);
// Get local environmental data
const airQuality = await this.airQuality.getCurrentAQI();
const energyTrends = await this.energy.getConsumptionTrends();
// Calculate comprehensive ESG score
return {
overall: this.calculateOverallScore(carbonScore, airQuality),
breakdown: {
transport: this.analyzeTransportSpending(transactions),
energy: this.analyzeEnergyUsage(transactions, energyTrends),
consumption: this.analyzeConsumptionPatterns(transactions)
},
recommendations: this.generateRecommendations(carbonScore)
};
}
async analyzeCarbonFootprint(transactions) {
const categories = {
'FUEL': { carbon: 2.3, weight: 0.3 }, // kg CO2 per AED
'AIRLINES': { carbon: 1.8, weight: 0.2 },
'RESTAURANTS': { carbon: 0.5, weight: 0.1 },
'GROCERIES': { carbon: 0.3, weight: 0.1 },
'PUBLIC_TRANSPORT': { carbon: -0.5, weight: 0.2 } // Negative = good
};
let totalCarbon = 0;
let totalSpend = 0;
transactions.forEach(tx => {
const category = categories[tx.merchantCategory];
if (category) {
totalCarbon += tx.amount * category.carbon;
totalSpend += tx.amount;
}
});
return {
totalCarbon,
carbonPerAED: totalCarbon / totalSpend,
rating: this.getCarbonRating(totalCarbon)
};
}
generateRecommendations(carbonScore) {
const recommendations = [];
if (carbonScore.totalCarbon > 100) {
recommendations.push({
priority: 'HIGH',
action: 'Switch to public transport 2 days per week',
impact: 'Save 20kg CO2/month and AED 200',
incentive: 'Earn 2% cashback on RTA payments'
});
}
if (carbonScore.categories.energy > 50) {
recommendations.push({
priority: 'MEDIUM',
action: 'Enroll in DEWA green tariff program',
impact: 'Support renewable energy',
incentive: 'Fixed rate protection for 12 months'
});
}
return recommendations;
}
}
// Usage
const coach = new ESGCoach(openFinanceAPI, { ead, dewa });
const esgReport = await coach.calculateESGScore('user123', 30);
Copy
function ESGDashboard({ esgData }) {
return (
<div className="esg-dashboard">
<ScoreCard
score={esgData.overall}
trend={esgData.trend}
benchmark="UAE Average"
/>
<CarbonFootprint
data={esgData.breakdown}
comparison={nationalAverage}
/>
<AirQualityMap
currentAQI={esgData.airQuality}
userLocation={esgData.location}
/>
<Recommendations
items={esgData.recommendations}
onAccept={handleAcceptRecommendation}
/>
<ImpactTracker
savedCarbon={esgData.savedCarbon}
savedMoney={esgData.savedMoney}
/>
</div>
);
}
Expected Outcomes
- Help users reduce their carbon footprint through informed spending choices
- Encourage energy-conscious decisions that can lower spending
- Gamified experience with rewards for sustainable choices
- Social sharing of achievements and green scores
2. π Rent-to-Income & Move Advisor
Smart housing affordability analyzer with commute optimizationData Sources
- Open Finance: Income data, current expenses, savings patterns
- Government Data:
- DLD property transactions and rental data
- RTA commute times and costs
- DEWA utility averages by area
Implementation
- Core Algorithm
- Visualization
- Decision Matrix
Copy
class MoveAdvisor {
constructor(apis) {
this.finance = apis.openFinance;
this.property = apis.dld;
this.transport = apis.rta;
this.utilities = apis.dewa;
}
async findOptimalHousing(userId, workLocation) {
// Get user's financial profile
const profile = await this.getFinancialProfile(userId);
// Calculate affordable rent (30% rule)
const maxRent = profile.monthlyIncome * 0.3;
// Get available properties
const properties = await this.property.searchRentals({
maxPrice: maxRent * 12,
bedrooms: profile.familySize > 2 ? 2 : 1
});
// Score each property
const scoredProperties = await Promise.all(
properties.map(async (property) => {
const score = await this.scoreProperty(
property,
profile,
workLocation
);
return { ...property, score };
})
);
return scoredProperties
.sort((a, b) => b.score.total - a.score.total)
.slice(0, 10);
}
async scoreProperty(property, profile, workLocation) {
// Calculate commute score
const commute = await this.transport.getCommute(
property.location,
workLocation
);
const commuteScore = this.calculateCommuteScore(
commute.time,
commute.cost,
profile.monthlyIncome
);
// Calculate affordability score
const totalMonthlyCost =
property.monthlyRent +
commute.cost * 22 + // Working days
(await this.utilities.getAverageBill(property.area, property.size));
const affordabilityScore =
100 - (totalMonthlyCost / profile.monthlyIncome) * 100;
// Calculate lifestyle score
const amenities = await this.getAreaAmenities(property.area);
const lifestyleScore = this.calculateLifestyleScore(
amenities,
profile.preferences
);
return {
total: (commuteScore + affordabilityScore + lifestyleScore) / 3,
breakdown: {
commute: commuteScore,
affordability: affordabilityScore,
lifestyle: lifestyleScore
},
monthlyCost: totalMonthlyCost,
savings: profile.currentRent - property.monthlyRent
};
}
calculateCommuteScore(time, cost, income) {
// Ideal: < 30 min, < 5% of income
const timeScore = Math.max(0, 100 - (time - 30) * 2);
const costScore = Math.max(0, 100 - (cost / income) * 2000);
return (timeScore + costScore) / 2;
}
async getAreaAmenities(area) {
// Get nearby facilities from government data
const [schools, healthcare, retail, parks] = await Promise.all([
this.getSchools(area),
this.getHealthcare(area),
this.getRetail(area),
this.getParks(area)
]);
return { schools, healthcare, retail, parks };
}
}
// Usage
const advisor = new MoveAdvisor({ openFinance, dld, rta, dewa });
const recommendations = await advisor.findOptimalHousing(
'user123',
'DIFC'
);
Copy
function HousingMap({ properties, userProfile }) {
const mapRef = useRef(null);
useEffect(() => {
const map = new mapboxgl.Map({
container: mapRef.current,
style: 'mapbox://styles/mapbox/light-v10',
center: [55.2708, 25.2048], // Dubai
zoom: 11
});
// Add property markers
properties.forEach(property => {
const el = document.createElement('div');
el.className = 'property-marker';
el.style.backgroundColor = getScoreColor(property.score.total);
new mapboxgl.Marker(el)
.setLngLat([property.lng, property.lat])
.setPopup(createPropertyPopup(property))
.addTo(map);
});
// Add commute lines
properties.slice(0, 3).forEach(property => {
map.addLayer({
id: `route-${property.id}`,
type: 'line',
source: {
type: 'geojson',
data: {
type: 'Feature',
geometry: {
type: 'LineString',
coordinates: [
[property.lng, property.lat],
[userProfile.workLng, userProfile.workLat]
]
}
}
},
paint: {
'line-color': getScoreColor(property.score.commute),
'line-width': 3,
'line-opacity': 0.7
}
});
});
}, [properties]);
return <div ref={mapRef} className="housing-map" />;
}
Copy
class DecisionMatrix {
generateReport(properties, profile) {
return {
recommendations: properties.map(p => ({
address: p.address,
area: p.area,
rent: p.monthlyRent,
totalMonthlyCost: p.score.monthlyCost,
savingsVsCurrent: p.score.savings,
commuteTime: p.commute.time,
walkScore: p.amenities.walkScore,
pros: this.generatePros(p, profile),
cons: this.generateCons(p, profile),
verdict: this.generateVerdict(p, profile)
})),
insights: {
optimalBudget: this.calculateOptimalBudget(profile),
bestAreas: this.identifyBestAreas(properties),
tradeoffs: this.analyzeTradeoffs(properties, profile)
}
};
}
generatePros(property, profile) {
const pros = [];
if (property.score.affordability > 80) {
pros.push(`Saves AED ${property.score.savings}/month vs current`);
}
if (property.commute.time < 20) {
pros.push(`Only ${property.commute.time} min to work`);
}
if (property.amenities.schools?.length > 3) {
pros.push(`${property.amenities.schools.length} schools nearby`);
}
return pros;
}
analyzeTradeoffs(properties, profile) {
// Find properties that optimize different factors
const cheapest = properties.sort((a, b) => a.rent - b.rent)[0];
const closest = properties.sort(
(a, b) => a.commute.time - b.commute.time
)[0];
const bestValue = properties.sort(
(a, b) => b.score.total - a.score.total
)[0];
return {
saveMoney: {
property: cheapest,
monthlySavings: profile.currentRent - cheapest.monthlyRent,
tradeoff: `${closest.commute.time - cheapest.commute.time} min longer commute`
},
saveTime: {
property: closest,
timeSaved: `${profile.currentCommute - closest.commute.time} min/day`,
tradeoff: `AED ${closest.monthlyRent - cheapest.monthlyRent} more/month`
},
balanced: {
property: bestValue,
reasoning: 'Best combination of price, location, and amenities'
}
};
}
}
Expected Outcomes
- Smart recommendations based on total cost of living
- Commute optimization saving 10+ hours per month
- Lifestyle matching using amenity data
- Financial projections for each housing option
3. π SME Risk & Growth Radar
Intelligent business analytics combining financial and market dataData Sources
- Open Finance: Business accounts, cash flow, transaction patterns
- Government Data:
- DED business licenses and sector data
- DET tourism demand by segment
- FCSC economic indicators
- DLD commercial property data
Implementation
- Risk Engine
- Predictive Models
- Dashboard UI
Copy
class SMERiskEngine {
constructor(apis) {
this.finance = apis.openFinance;
this.ded = apis.dedBusinessData;
this.tourism = apis.detTourism;
this.economy = apis.fcscEconomy;
}
async analyzeBusinessRisk(businessId) {
// Get financial health
const financials = await this.getFinancialMetrics(businessId);
// Get market context
const market = await this.getMarketContext(
financials.sector,
financials.location
);
// Calculate risk scores
const riskScores = {
financial: this.calculateFinancialRisk(financials),
market: this.calculateMarketRisk(market),
operational: this.calculateOperationalRisk(financials, market),
external: this.calculateExternalRisk(market)
};
// Generate insights and recommendations
const insights = this.generateInsights(riskScores, financials, market);
const opportunities = await this.identifyOpportunities(
financials,
market
);
return {
overallRisk: this.calculateOverallRisk(riskScores),
breakdown: riskScores,
insights,
opportunities,
alerts: this.generateAlerts(riskScores)
};
}
async getFinancialMetrics(businessId) {
const account = await this.finance.getBusinessAccount(businessId);
const transactions = await this.finance.getTransactions(
businessId,
90
);
// Calculate key metrics
const metrics = {
monthlyRevenue: this.calculateMonthlyRevenue(transactions),
monthlyExpenses: this.calculateMonthlyExpenses(transactions),
cashFlow: this.analyzeCashFlow(transactions),
burnRate: this.calculateBurnRate(account.balance, transactions),
runway: this.calculateRunway(account.balance, transactions),
customerConcentration: this.analyzeCustomerConcentration(
transactions
),
paymentDelays: this.analyzePaymentDelays(transactions),
seasonality: this.detectSeasonality(transactions)
};
return {
...metrics,
sector: account.sector,
location: account.location,
accountAge: account.age
};
}
async getMarketContext(sector, location) {
// Get competitor density
const competitors = await this.ded.searchBusinesses({
sector,
area: location,
status: 'active'
});
// Get tourism impact if relevant
const tourismData =
this.isTourismRelated(sector)
? await this.tourism.getVisitorStats()
: null;
// Get economic indicators
const economy = await this.economy.getIndicators();
// Get commercial property trends
const propertyData = await this.getPropertyTrends(location);
return {
competitorCount: competitors.length,
marketSaturation: competitors.length / 1000, // per 1000 population
tourismTrend: tourismData?.trend || 'stable',
economicOutlook: economy.gdpGrowth > 2 ? 'positive' : 'cautious',
rentTrend: propertyData.trend,
demandIndicators: this.calculateDemandIndicators(
sector,
tourismData,
economy
)
};
}
calculateFinancialRisk(financials) {
let score = 100; // Start with perfect score
// Cash flow issues
if (financials.cashFlow.trend === 'negative') score -= 25;
if (financials.runway < 6) score -= 20; // Less than 6 months runway
// Customer concentration risk
if (financials.customerConcentration > 0.5) score -= 15; // 50%+ from one customer
// Payment delays
if (financials.paymentDelays.average > 45) score -= 10; // 45+ days average
// High burn rate
if (financials.burnRate > financials.monthlyRevenue * 0.8) score -= 15;
return Math.max(0, score);
}
async identifyOpportunities(financials, market) {
const opportunities = [];
// Working capital opportunity
if (financials.paymentDelays.average > 30) {
opportunities.push({
type: 'WORKING_CAPITAL',
title: 'Invoice Financing Available',
description: `Convert your AED ${financials.paymentDelays.outstanding} outstanding invoices to immediate cash`,
value: financials.paymentDelays.outstanding * 0.9,
action: 'Apply for invoice financing'
});
}
// Growth opportunity
if (market.tourismTrend === 'growing' && financials.cashFlow.trend === 'positive') {
opportunities.push({
type: 'EXPANSION',
title: 'Tourism Sector Growth Detected',
description: 'Tourist arrivals up 15% YoY - perfect time to expand',
value: financials.monthlyRevenue * 0.2, // Potential 20% growth
action: 'Apply for growth capital'
});
}
// Cost optimization
if (financials.monthlyExpenses > market.sectorAverage * 1.2) {
opportunities.push({
type: 'OPTIMIZATION',
title: 'Cost Reduction Opportunity',
description: 'Your expenses are 20% above sector average',
value: financials.monthlyExpenses * 0.15,
action: 'View cost optimization report'
});
}
return opportunities;
}
generateAlerts(riskScores) {
const alerts = [];
if (riskScores.financial < 50) {
alerts.push({
severity: 'HIGH',
message: 'Cash flow requires immediate attention',
action: 'Review financial health report'
});
}
if (riskScores.market < 60) {
alerts.push({
severity: 'MEDIUM',
message: 'Market conditions changing',
action: 'Adjust business strategy'
});
}
return alerts;
}
}
Copy
class SMEPredictiveAnalytics {
constructor(historicalData) {
this.data = historicalData;
this.models = this.trainModels();
}
trainModels() {
return {
revenue: this.trainRevenueModel(),
churn: this.trainChurnModel(),
default: this.trainDefaultModel()
};
}
async predictNextQuarter(businessId) {
const features = await this.extractFeatures(businessId);
return {
revenue: {
forecast: this.models.revenue.predict(features),
confidence: this.models.revenue.confidence,
factors: this.identifyKeyFactors(features, 'revenue')
},
churnRisk: {
probability: this.models.churn.predict(features),
riskLevel: this.getRiskLevel(this.models.churn.predict(features)),
preventionActions: this.getChurnPrevention(features)
},
defaultRisk: {
probability: this.models.default.predict(features),
earlyWarnings: this.identifyEarlyWarnings(features)
}
};
}
async extractFeatures(businessId) {
// Combine multiple data sources for feature engineering
const [financial, market, seasonal, external] = await Promise.all([
this.getFinancialFeatures(businessId),
this.getMarketFeatures(businessId),
this.getSeasonalFeatures(businessId),
this.getExternalFeatures(businessId)
]);
return {
...financial,
...market,
...seasonal,
...external,
interactionFeatures: this.createInteractionFeatures(
financial,
market
)
};
}
identifyKeyFactors(features, target) {
// Use feature importance from model
const importance = this.models[target].featureImportance;
return Object.entries(importance)
.sort(([, a], [, b]) => b - a)
.slice(0, 5)
.map(([feature, score]) => ({
factor: this.humanizeFeatureName(feature),
impact: score,
currentValue: features[feature],
recommendation: this.getFeatureRecommendation(feature, features[feature])
}));
}
getChurnPrevention(features) {
const actions = [];
if (features.daysSinceLastTransaction > 30) {
actions.push({
priority: 'HIGH',
action: 'Engagement campaign',
expectedImpact: 'Reduce churn risk by 25%'
});
}
if (features.supportTickets > 3) {
actions.push({
priority: 'HIGH',
action: 'Priority support intervention',
expectedImpact: 'Improve satisfaction by 40%'
});
}
if (features.utilizationRate < 0.3) {
actions.push({
priority: 'MEDIUM',
action: 'Feature education program',
expectedImpact: 'Increase usage by 50%'
});
}
return actions;
}
}
Copy
function SMERiskDashboard({ businessId }) {
const [riskData, setRiskData] = useState(null);
const [predictions, setPredictions] = useState(null);
useEffect(() => {
async function loadData() {
const [risk, forecast] = await Promise.all([
riskEngine.analyzeBusinessRisk(businessId),
predictiveAnalytics.predictNextQuarter(businessId)
]);
setRiskData(risk);
setPredictions(forecast);
}
loadData();
}, [businessId]);
return (
<div className="sme-dashboard">
<RiskGauge
score={riskData?.overallRisk}
breakdown={riskData?.breakdown}
/>
<AlertBanner alerts={riskData?.alerts} />
<div className="metrics-grid">
<RevenueChart
historical={riskData?.financials}
forecast={predictions?.revenue}
/>
<CashFlowProjection
current={riskData?.financials?.cashFlow}
runway={riskData?.financials?.runway}
/>
<MarketInsights
competitors={riskData?.market?.competitorCount}
tourismTrend={riskData?.market?.tourismTrend}
/>
<OpportunityCards
opportunities={riskData?.opportunities}
onAction={handleOpportunityAction}
/>
</div>
<PredictiveInsights predictions={predictions} />
<ActionPlan
risks={riskData}
predictions={predictions}
onImplement={handleActionImplementation}
/>
</div>
);
}
function RiskGauge({ score, breakdown }) {
const getColor = (score) => {
if (score >= 80) return '#10b981'; // Green
if (score >= 60) return '#f59e0b'; // Orange
return '#ef4444'; // Red
};
return (
<div className="risk-gauge">
<CircularProgress
value={score}
color={getColor(score)}
size={200}
strokeWidth={15}
>
<div className="score-label">
<span className="score">{score}</span>
<span className="label">Risk Score</span>
</div>
</CircularProgress>
<div className="breakdown">
{Object.entries(breakdown).map(([category, value]) => (
<div key={category} className="risk-category">
<span>{category}</span>
<ProgressBar value={value} color={getColor(value)} />
</div>
))}
</div>
</div>
);
}
Expected Outcomes
- Early warning system for cash flow issues
- Growth opportunities identified from market data
- Risk-adjusted lending recommendations
- Automated alerts for critical business events
4. π Safe-Drive Insurance Discounts
Dynamic insurance pricing based on driving behavior and risk factorsData Sources
- Open Finance: Fuel spending, auto maintenance, parking payments
- Government Data:
- Dubai Police traffic incident hotspots
- NCM weather data
- RTA traffic flow data
Implementation
- Risk Scoring
- Real-time Monitoring
- Insurance Dashboard
Copy
class DrivingRiskAnalyzer {
constructor(apis) {
this.finance = apis.openFinance;
this.traffic = apis.dubaiPolice;
this.weather = apis.ncm;
this.transport = apis.rta;
}
async calculateDrivingRisk(userId, vehicleId) {
// Analyze driving patterns from financial data
const drivingProfile = await this.analyzeDrivingPatterns(userId);
// Get contextual risk factors
const riskFactors = await this.getRiskFactors(drivingProfile);
// Calculate comprehensive risk score
const riskScore = this.computeRiskScore(drivingProfile, riskFactors);
// Generate insurance recommendations
const insurance = this.generateInsuranceOptions(riskScore);
return {
riskScore,
profile: drivingProfile,
factors: riskFactors,
insurance,
savings: this.calculatePotentialSavings(riskScore)
};
}
async analyzeDrivingPatterns(userId) {
const transactions = await this.finance.getTransactions(userId, 180);
// Extract driving-related spending
const fuelSpending = transactions.filter(t =>
t.category === 'FUEL'
);
const parkingPayments = transactions.filter(t =>
t.merchant.includes('RTA') || t.category === 'PARKING'
);
const maintenance = transactions.filter(t =>
t.category === 'AUTO_MAINTENANCE'
);
// Analyze patterns
return {
monthlyMileage: this.estimateMileage(fuelSpending),
drivingFrequency: this.analyzeDrivingFrequency(fuelSpending),
preferredTimes: this.analyzePreferredTimes(parkingPayments),
maintenanceScore: this.scoreMaintenanceHabits(maintenance),
areas: this.identifyFrequentAreas(parkingPayments)
};
}
async getRiskFactors(profile) {
// Get incident data for frequent areas
const incidentRisk = await this.calculateAreaRisk(profile.areas);
// Get weather risk factors
const weatherRisk = await this.calculateWeatherRisk(
profile.preferredTimes
);
// Get traffic congestion risk
const congestionRisk = await this.calculateCongestionRisk(
profile.areas,
profile.preferredTimes
);
return {
areaRisk: incidentRisk,
weatherRisk,
congestionRisk,
timeRisk: this.calculateTimeRisk(profile.preferredTimes)
};
}
async calculateAreaRisk(areas) {
const risks = await Promise.all(
areas.map(async (area) => {
const incidents = await this.traffic.getIncidents({
area: area.name,
period: 'last_year'
});
return {
area: area.name,
frequency: area.frequency,
incidentRate: incidents.length / 365,
severity: this.calculateAverageSeverity(incidents),
risk: this.computeAreaRisk(incidents, area.frequency)
};
})
);
return {
overall: this.aggregateAreaRisk(risks),
breakdown: risks
};
}
computeRiskScore(profile, factors) {
const weights = {
mileage: 0.2,
areas: 0.3,
time: 0.15,
weather: 0.1,
maintenance: 0.15,
congestion: 0.1
};
// Normalize factors to 0-100 scale
const normalized = {
mileage: this.normalizeMileageRisk(profile.monthlyMileage),
areas: factors.areaRisk.overall,
time: factors.timeRisk,
weather: factors.weatherRisk,
maintenance: 100 - profile.maintenanceScore, // Inverse
congestion: factors.congestionRisk
};
// Calculate weighted score
const score = Object.entries(weights).reduce((total, [key, weight]) => {
return total + normalized[key] * weight;
}, 0);
return {
overall: Math.round(100 - score), // Higher score = lower risk
components: normalized
};
}
generateInsuranceOptions(riskScore) {
const baseRate = 3000; // Base annual premium in AED
// Calculate discount based on risk score
const discount = Math.max(0, (riskScore.overall - 50) * 0.01); // 1% per point above 50
const options = [
{
type: 'COMPREHENSIVE',
baseRate,
discount: discount * baseRate,
finalRate: baseRate * (1 - discount),
features: ['Full coverage', 'Zero depreciation', 'Roadside assistance']
},
{
type: 'THIRD_PARTY_PLUS',
baseRate: baseRate * 0.6,
discount: discount * baseRate * 0.6,
finalRate: baseRate * 0.6 * (1 - discount),
features: ['Third party', 'Fire & theft', 'Personal accident']
},
{
type: 'PAY_AS_YOU_DRIVE',
baseRate: baseRate * 0.4,
perKm: 0.5,
estimatedAnnual: this.calculatePayAsYouDrive(
baseRate * 0.4,
riskScore,
12000 // Average annual km
),
features: ['Usage-based', 'Real-time tracking', 'Behavior rewards']
}
];
return options.map(option => ({
...option,
monthlyPremium: option.finalRate ? option.finalRate / 12 : option.estimatedAnnual / 12,
savingsVsMarket: this.calculateMarketSavings(option.finalRate || option.estimatedAnnual)
}));
}
}
Copy
class RealTimeDrivingMonitor {
constructor(userId) {
this.userId = userId;
this.session = null;
this.alerts = [];
}
startMonitoring() {
this.session = {
startTime: new Date(),
alerts: [],
score: 100
};
// Monitor real-time conditions
this.monitorWeather();
this.monitorTraffic();
this.monitorDrivingTime();
return this.session;
}
async monitorWeather() {
const weather = await this.getWeatherConditions();
if (weather.visibility < 1000) {
this.addAlert({
type: 'WEATHER',
severity: 'HIGH',
message: 'Low visibility detected - reduce speed',
impact: -5
});
}
if (weather.rainfall > 10) {
this.addAlert({
type: 'WEATHER',
severity: 'MEDIUM',
message: 'Heavy rain - increase following distance',
impact: -3
});
}
}
async monitorTraffic() {
const location = await this.getCurrentLocation();
const incidents = await this.getNearbyIncidents(location);
incidents.forEach(incident => {
if (this.calculateDistance(location, incident) < 1) {
this.addAlert({
type: 'TRAFFIC',
severity: 'HIGH',
message: `Accident ahead on ${incident.road}`,
impact: -10,
action: 'Consider alternative route'
});
}
});
}
monitorDrivingTime() {
const hour = new Date().getHours();
if (hour >= 22 || hour < 6) {
this.addAlert({
type: 'TIME',
severity: 'LOW',
message: 'Night driving detected',
impact: -2,
tip: 'Ensure headlights are clean'
});
}
if ([7, 8, 17, 18, 19].includes(hour)) {
this.addAlert({
type: 'TIME',
severity: 'MEDIUM',
message: 'Peak hour traffic',
impact: -3,
tip: 'Allow extra time for journey'
});
}
}
addAlert(alert) {
this.alerts.push({
...alert,
timestamp: new Date()
});
this.session.score += alert.impact;
// Send push notification for high severity
if (alert.severity === 'HIGH') {
this.sendPushNotification(alert);
}
}
async endSession() {
const duration = (new Date() - this.session.startTime) / 1000 / 60; // minutes
return {
duration,
finalScore: Math.max(0, this.session.score),
alerts: this.alerts,
rewards: this.calculateRewards(this.session.score),
tips: this.generateDrivingTips(this.alerts)
};
}
calculateRewards(score) {
const rewards = [];
if (score >= 95) {
rewards.push({
type: 'DISCOUNT',
value: '5% off next month premium',
code: 'SAFE95'
});
}
if (score >= 90) {
rewards.push({
type: 'POINTS',
value: 100,
description: 'Safe driving points'
});
}
return rewards;
}
}
Copy
function InsuranceDashboard({ userId }) {
const [riskData, setRiskData] = useState(null);
const [monitoring, setMonitoring] = useState(false);
const [currentSession, setCurrentSession] = useState(null);
return (
<div className="insurance-dashboard">
<SafetyScore score={riskData?.riskScore?.overall} />
<div className="risk-factors">
<RiskFactorCard
title="Driving Areas"
score={riskData?.factors?.areaRisk?.overall}
details={riskData?.factors?.areaRisk?.breakdown}
/>
<RiskFactorCard
title="Time Patterns"
score={riskData?.factors?.timeRisk}
recommendation="Avoid peak hours when possible"
/>
<RiskFactorCard
title="Maintenance"
score={riskData?.profile?.maintenanceScore}
nextService={riskData?.profile?.nextServiceDue}
/>
</div>
<InsuranceOptions options={riskData?.insurance} />
<DrivingMonitor
active={monitoring}
session={currentSession}
onStart={() => startMonitoring()}
onEnd={() => endMonitoring()}
/>
<SafetyTips
based on={riskData?.factors}
personalized={true}
/>
<ClaimsHistory userId={userId} />
<RewardsTracker
points={riskData?.rewards?.points}
badges={riskData?.rewards?.badges}
discounts={riskData?.rewards?.discounts}
/>
</div>
);
}
function InsuranceOptions({ options }) {
return (
<div className="insurance-options">
{options?.map(option => (
<div key={option.type} className="option-card">
<h3>{option.type}</h3>
<div className="pricing">
<span className="original">
AED {option.baseRate}/year
</span>
<span className="discounted">
AED {option.finalRate}/year
</span>
<span className="savings">
Save AED {option.discount}
</span>
</div>
<ul className="features">
{option.features.map(feature => (
<li key={feature}>{feature}</li>
))}
</ul>
<button className="select-plan">
Select Plan
</button>
</div>
))}
</div>
);
}
Expected Outcomes
- Potential insurance premium discounts for safe driving behavior
- Real-time safety alerts during driving
- Gamified safe driving with rewards
- Predictive maintenance reminders
5. βοΈ Travel FX & Rewards Optimizer
Smart travel spending advisor with FX optimizationData Sources
- Open Finance: Card transaction history, spending patterns
- Government Data:
- DET visitor origin statistics
- CBUAE exchange rates
- Tourism events calendar
Implementation
Copy
class TravelOptimizer {
async optimizeTravelSpending(userId, destination, dates) {
// Analyze historical spending
const spendingPatterns = await this.analyzeUserSpending(userId);
// Get destination insights
const destinationData = await this.getDestinationInsights(destination);
// FX optimization
const fxStrategy = await this.optimizeFXStrategy(
destination.currency,
dates,
spendingPatterns.averageSpend
);
// Card recommendations
const cards = await this.recommendCards(destination, spendingPatterns);
return {
budget: this.calculateBudget(spendingPatterns, destinationData),
fxStrategy,
cards,
savings: this.estimateSavings(fxStrategy, cards)
};
}
async optimizeFXStrategy(currency, dates, amount) {
// Get historical rates
const rates = await this.cbuae.getExchangeRates(currency, 90);
// Predict optimal exchange timing
const prediction = this.predictRates(rates, dates);
return {
currentRate: rates[rates.length - 1],
predictedRate: prediction.rate,
recommendation: prediction.rate < rates[rates.length - 1]
? 'Exchange now'
: `Wait until ${prediction.optimalDate}`,
savingsEstimate: Math.abs(prediction.rate - rates[rates.length - 1]) * amount
};
}
}
Expected Outcomes
- FX savings of 3-5% through timing optimization
- Card reward maximization worth 2-4% of spend
- Personalized budgets based on destination data
- Real-time spending tracking abroad
6. β‘ Utility-Stress Early Warning
Predictive alerts for SME utility cost pressuresData Sources
- Open Finance: Business cash flow, expense patterns
- Government Data:
- DEWA consumption trends
- MOEI energy statistics
- DED business sector data
Implementation
Copy
class UtilityStressDetector {
async detectUtilityStress(businessId) {
// Get business financial data
const financials = await this.getBusinessFinancials(businessId);
// Get utility consumption patterns
const utilityData = await this.getUtilityData(businessId);
// Sector benchmarks
const benchmarks = await this.getSectorBenchmarks(
financials.sector,
financials.size
);
// Detect stress signals
const stressSignals = this.analyzeStressSignals(
financials,
utilityData,
benchmarks
);
// Generate alerts and solutions
return {
stressLevel: stressSignals.level,
alerts: stressSignals.alerts,
solutions: this.generateSolutions(stressSignals),
forecast: this.forecastUtilityCosts(utilityData)
};
}
analyzeStressSignals(financials, utility, benchmarks) {
const signals = [];
// Check if utility costs are rising faster than revenue
if (utility.growthRate > financials.revenueGrowth * 1.5) {
signals.push({
type: 'COST_PRESSURE',
severity: 'HIGH',
message: 'Utility costs growing 50% faster than revenue'
});
}
// Compare to sector benchmarks
if (utility.perSquareMeter > benchmarks.avgPerSqm * 1.2) {
signals.push({
type: 'ABOVE_BENCHMARK',
severity: 'MEDIUM',
message: '20% above sector average consumption'
});
}
return {
level: this.calculateStressLevel(signals),
alerts: signals
};
}
generateSolutions(stressSignals) {
const solutions = [];
if (stressSignals.level === 'HIGH') {
solutions.push({
type: 'INVOICE_FINANCING',
description: 'Convert outstanding invoices to immediate cash',
value: 'Up to AED 50,000',
action: 'Apply for financing'
});
}
solutions.push({
type: 'ENERGY_AUDIT',
description: 'Free DEWA energy audit for businesses',
savings: 'Potential cost reduction opportunities',
action: 'Schedule audit'
});
return solutions;
}
}
Expected Outcomes
- Early warning system for potential cash flow issues
- Energy optimization recommendations to help reduce costs
- Automated financing offers when needed
- Sector benchmarking for efficiency insights
π οΈ Implementation Resources
API Integration Template
Copy
// Base class for all mashup implementations
class DataMashup {
constructor(config) {
this.openFinance = new OpenFinanceAPI(config.openFinance);
this.govData = new GovernmentDataAPI(config.govData);
this.cache = new CacheService();
}
async fetchWithCache(source, endpoint, params) {
const cacheKey = `${source}:${endpoint}:${JSON.stringify(params)}`;
const cached = await this.cache.get(cacheKey);
if (cached) return cached;
const data = await this[source].fetch(endpoint, params);
await this.cache.set(cacheKey, data, 300); // 5 min cache
return data;
}
async batchFetch(requests) {
return Promise.all(
requests.map(req =>
this.fetchWithCache(req.source, req.endpoint, req.params)
)
);
}
}
Error Handling
Copy
class ResilientDataFetcher {
async fetchWithFallback(primary, fallback) {
try {
return await primary();
} catch (error) {
console.warn('Primary source failed, using fallback', error);
return await fallback();
}
}
async fetchWithRetry(fn, retries = 3) {
for (let i = 0; i < retries; i++) {
try {
return await fn();
} catch (error) {
if (i === retries - 1) throw error;
await new Promise(r => setTimeout(r, 1000 * Math.pow(2, i)));
}
}
}
}
π― Judging Criteria Alignment
Each mashup addresses key hackathon judging criteria:| Criteria | How Mashups Excel |
|---|---|
| Innovation | Novel combinations of financial and government data |
| Local Relevance | UAE-specific data solving real market problems |
| Technical Excellence | Sophisticated data integration and analysis |
| User Experience | Intuitive dashboards with actionable insights |
| Business Viability | Clear monetization through fees or commissions |
| Scalability | Cloud-native architecture handling growth |
Next Steps
View Categories
Explore all available datasets
API Reference
Get implementation code
Start Building
Begin your integration
Hackathon Strategy: Start with one core mashup and execute it well. Judges prefer a polished implementation of one idea over multiple half-finished features.

